The VH-1 User’s Guide

The Virginia Bulls

April 3, 1995

Contents
1 Preface

2 PPM: A Brief Review

3 VH-1
3.1 One-dimensional hydrodynamics
3.1.1 sweepx2d
3.1.2 boundary.f.
3.1.3 fictforces L
3.1.4 gravity e
315 PP e e
3.1.6 flatten
3.1.7 paraset L. e
3.1.8 parabola
3.1.9 states
3.1.10 riemanno e e
3.1.11 evolve oL
3.1.12 remap e
3.2 The rest of the program oo
321 mainNd.f
322 equalgrd L
3.2.3 initoned, inittwod, initthreed
3.24 timestep
325 printNd.f
326 dumpNd.f
3.3 Running VH-1
3.4 The Godunov Code e

Test Problems

4.1 Sod Shock Tube
4.2 1D Advection of astepin density L.
4.3 Double Mach Reflection oo o
4.4 Mach 3 Wind Tunnel with a Step
4.5 Supersonic Flow Past a Cylinder/Sphere
4.6 Hawley-Zabusky 2D Angled Shock Tube
4.7 1D Hydrostatic Equilibrium in a Polytropic Star
4.8 1D Supernova in a power-law star.o oo
4.9 1D Supernova in a polytropic star o000
4.10 Geometry test problemso oL

© O 00 00 W~~~ OW

[T e T e T T S G e Gy SR Y
S N T TO O N S N

5 Dissipation

5.1 Shock Flattening

5.2 Grid Wiggling

5.3 Artificial Viscosity
6 Boundary Conditions

6.1 Reflecting

6.2 Fixed Inflow

6.3 Inflow/Outflow

6.4 Other Boundary Conditions

7 Optimization and Efficiency

20
21
21
22

22
22
23
23
24

24

1 Preface

VH-1 was written by the numerical astrophysics group at the University of Virginia Institute
of Theoretical Astrophysics in 1990-1991, and is based on the description of the piecewise
parabolic method (PPM) given in Colella and Woodward (1984, hereafter C&W). While
many individuals at UVa contributed to the development of VH-1, the bulk of the code
writing and testing was done by John Hawley, John Blondin, Greg Lindahl, and FEric
Lufkin. This User’s Guide was written by John Blondin and Greg Lindahl. John Blondin
is responsible for all the correct parts, while Greg Lindahl inserted bugs.

Our motivation for writing VH-1 is to provide the astrophysics community with a freely-
redistributable implementation of PPM that can be adapted by someone, already familiar
with finite differencing, to their own research. VH-1 is NOT idiot proof. No attempt has
been made to provide a universal program that can be blindly applied to any problem in
hydrodynamics. To that end, we expect the VH-1 user to be able to change the program
to suit their own problem, and to devise test problems to ensure that the program does not
have bugs which we have not caught in our testing for our particular problems. In addition,
we assume that the reader of this Guide and user of this program is Fortran-literate, and
that they will know how to compile, link, and run VH-1 on a local machine.

This guide to VH-1 will not repeat the detailed description of PPM given in C&W, but
will merely provide a brief overview of the algorithm in § 2. It is imperative that the VH-1
user read and understand C&Win addition to reading this manual.

The following sections provide a brief overview of PPM, a detailed description of VH-1,
and instructions on how to run it. We also discuss some general features of the program
and algorithm that we have found necessary to pay careful attention to, and that therefore
should be of interest to the VH-1 user. These include dissipation techniques and coordinate
singularities. A few test problems are included with the program. A description of each of
these problems and an example of VH-1 output for each problem is given in § 4.

2 PPM: A Brief Review

VH-1 uses finite difference techniques to solve the equations of ideal, inviscid, compressible
fluid flow. These equations, written in conservative Eulerian form, are:

Ot,o—l—V(pu): 0,

d¢(pu)+ V- (puu) + Vp = F,
9i(p€) + V- (p€u)+ V(pu) = G + pu-F

where & = u?/2 4+ (v — 1)7!p/p is the total specific energy, p is the mass density, p the
pressure, and F and G are momentum and energy source terms (e.g., gravity, radiative
cooling), and 0; is the partial derivative with respect to time. VH-1 does not include
an energy source term, but such a term can be readily added using an operator splitting
method. Because a force term is already present in the form of fictitious forces for a
curvilinear grid, we have included an arbitrary body force term in VH-1.

VH-1 is written as a Lagrangian hydrodynamics program coupled with a remap onto
the original Eulerian grid. This implementation of PPM is referred to as PPM-LR. Our
primary reason for using PPM-LR rather than the direct Eulerian method (PPM-DE) is to
avoid the subtleties associated with constructing the correct input states for the Riemann
problem in PPM-DE (see pages 190-191 in C&W). Despite the fact that PPM-LR requires
a second call to the interpolation routines for the remap step, the computation of the input
states is simplified, and the Courant constraint on the timestep is less restrictive, being
the minimum of (Az/ug, Az/cy) rather than Az/(uy 4+ ¢5). In practice we find PPM-LR
to be less dissipative than PPM-DE (not always a good thing), and better at maintaining
contact discontinuities without the aid of a contact steepener.

The following is an outline of the PPM-LR algorithm. For specific details see C&W.
As an illustration, let us consider the equations of ideal hydrodynamics in Lagrangian
coordinates in one dimension, planar geometry and no source terms. Written in conservative
form, these equations are:

815V — Omu =0
o+ 0pp =10
€ + Opup = 0

where V, u, p, and & are the specific volume, velocity, pressure, and total energy of the
gas, 0; is the partial derivative with respect to time, and 0,, is the partial derivative with
respect to the mass coordinate. The gas density p and internal energy e are related to these
quantities via the relations

1
p=1/V, e:E—§u2, p=(y—1)pe.
The conservation equations can be finite differenced as:

n+1 n —
r =7 Atu. 1
1 %—I_]+§

its3 7+

At
n+l _ . n — 5
= By i)

U

AL o
Amj(uj_%pj_% ~Ujy1PitL)

n+1 n
E =&+

where the subscript j refers to zone-averaged values, the subscripts j — % and j+ % refer to
values at the left and right-hand interfaces of the zone, and the superscript is the timestep.
The variables u and p are the time-averaged values of the velocity and pressure at the
(Lagrangian) zone interfaces. The challenge is to obtain accurate, stable estimates of @ and

P.

The approach of Godunov’s method is to obtain these time-averaged quantities by ap-
proximating the flow at each zone interface during each timestep with a Riemann shock
tube problem. At the beginning of the timestep, the zone interface is modeled as a discon-
tinuity separating two uniform states given by the zone averages on the left and right side

of the zone interface (zones j — 1 and 7). This constructed Riemann problem is then solved

to find the time-averaged value of the velocity and pressure (@ and p) at this discontinuity
(zone interface). The solution of the non-linear Riemann problem typically requires some
kind of iterative procedure, as described in van Leer (1979) and in Woodward (1986).

PPM improves upon Godunov’s method by using more accurate guesses for the input
states to the Riemann problem (the values on either side of the interface). Using a quadratic
(parabolic) interpolation of the fluid variables in each zone, the Riemann input states are
taken to be the average over that part of the zone that can be reached by a sound wave in
a time dt, i.e., the characteristic domain of dependence.

Given the time-averaged velocity and pressure, the hydrodynamic equations are differ-
enced to obtain the values of the fundamental variables (z, u, and e) at ¢ + dt. Then the
fluid variables are instantaneously remapped from the Lagrangian coordinate system to the
stationary FEulerian grid. This remap step uses the same quadratic interpolation method
that was used in the hydrodynamics step.

This description makes PPM sound relatively simple, but there are many key ingre-
dients that we have skipped over, including the parabolic interpolation and monotonicity
constraints, the iterative Riemann solver, and additional dissipation mechanisms. We will
give a briefl discussion of these first two topics in the appropriate subsections of § 3 and
postpone the discussion of dissipation until § 5 (see also C&W).

3 VH-1

The following description of the program assumes the reader is familiar with finite differ-
encing in general and with PPM in particular. For specific details we will occasionally refer
the reader to various references on PPM. In the following two subsections, we provide a
detailed description of the program, subroutine by subroutine. But first, we give a general
introduction to VH-1. Subroutine names are referred to in bold type, ppm, and generally
the subroutine foo can be found in the file foo.f. Variable names are given in a typewriter
typeface, ncycle.

VH-1 is currently written as a 1D, 2D, or 3D program, with each versions employing
the same subroutines for the hydrodynamics calculation. The only difference is that the
2D program calls the 1D hydro sweep for both the X and the Y directions, while the 1D
program only calls the hydro sweep for one dimension. Extension of the program to 3D is
relatively trivial, given the 2D program, but we recommend becoming familiar with the 1D
and 2D versions before attempting 3D computations. There are separate main programs,
mainld.f, main2d.f, and main3d.f. In general, files specific to the 1D or 2D versions
end with the characters 1d or 2d. Initialization routines have names like initfoold.f or
initbar2d.f.

The variables needed to run this program (ignoring for the moment the local variables
in the lower subroutines) are stored in three common blocks. global.h contains all the
“global” quantities needed throughout the program, such as the current time, Courant
parameter, and polytropic index y. Sweep.h contains all the 1D arrays needed for the one
dimensional sweeps, and is included in all subroutines below sweepx.fin the calling tree.
sweepglobal.h contains a parameter maxsweep which governs the size of scratch arrays in
the sweep, plus declarations for the sweepglobals common block, which contains variables

used for debugging. zoneld.h and zone2d.h contain the arrays for the fluid variables
(density, pressure, and velocities) and grid coordinates.

The input used to run the program is written in a namelist file, indat.

Our convention for output files is that each machine-readable “dump” of the program’s
state is written into files with names of the form dump1d.00001, where the number is
the current cycle. These dumpfiles are used to save the complete program state so that
the computation can be restarted at a later date. Human-readable output is periodically
written to a single file named printld, and a record of useful parameters and events are
written into a single file named historyld. VH-1 will avoid overwriting existing files by
adding the letter “A” to a filename as many times as needed to create a unique filename
(see makeunique).

A schematic of the program is shown in Figure 1. The program naturally separates into
two components: the main driver and the 1D hydro sweep. The main driver performs all
of the peripheral activities such as input, output, and timestep control, while the hydro
is computed within the 1D hydro sweeps. For multidimensional problems, this is done by
calling the 1D hydro sweep in alternating directions. The following two subsections will
describe these two primary components of VH-1.

3.1 One-dimensional hydrodynamics

In this subsection we will describe how VH-1 performs a 1D hydro step (see sweepld,
sweepx2d, or sweepy2d). We will defer discussion of the peripheral routines, such as
equalgrd, initialization routines, outputs, and drivers to the next subsection, and focus on
the actual hydrodynamics calculation in this subsection. The convention in this program
is to use the index j for one-dimensional situations, and (i,j) or (i,j,k) for multidimen-
sional arrays, so the following discussion will only use index j. In addition, on a coordinate
axis, the smaller coordinate is to the left, i.e. if coordinate runs from 0 to 1, then the left
boundary is at 0 and the right boundary is at 1.

3.1.1 sweepx2d

The hydrodynamics calculation begins by copying the variables from one slice of the global
2D variables (i.e. zrho) into the sweep 1D work arrays (e.g. rho). The 1D equivalent to
sweepx2d, sweepld, also copies from 1D global arrays into 1D work arrays for the sweep.
This is unnecessary, but wastes a tiny amount of CPU time and simplifies the code quite a
bit.

The sweep routines understand up to 2 quantities which are “transverse velocities”:
vtl and vt2. These velocities are advected along with the density, and are only used to
compute the total energy in a zone. A one-dimensional computation would use no transverse
velocities, while 2D and 3D would use 1 and 2, respectively. For example, in a 2D sweep
along the x direction, v, would be a transverse velocity.

The sweepNd routine subsequently calls several subroutines. The first of these is a call
to be_fundamental, which creates two ghost zones on either end of the 1D array. These
ghost zones are needed to construct parabolas at the edge of the grid. The values in the

ghost zones depend on our boundary conditions. The file boundary.f contains the routine
bc_fundamental.

Next, we compute some geometric constants for our parabolic interpolation, using the
routine paraset, in the file parabola.f.

Next, a call to fictforces computes fictitious forces, and a call to gravity computes the
real forces for this sweep A few sample implementations of these functions can be found in
fictforces.f, gravitynone.f, gravityself.f, and so on.

A call to ppm performs the entire Lagrangian hydrodynamics step (see following sec-
tions), updating the 1D array with new fluid variable values and coordinates. Subroutines
used by ppm include flatten, parabola, states, riemann, and evolve.

The ghost zones are reset according to the new, updated variables with another call to
bc_fundamental in boundary.f. The routine remap does just what its name implies,
and remaps the new fluid quantities from the new, evolved Lagrangian grid given by the
xa’s, to the old, Eulerian grid, given by the xa0’s.

Finally, the modified 1D arrays are copied back into the multidimensional arrays.

sweepy2d is similar to sweepx2d except that it loops over a different index and uses
the appropriate coordinates for the y direction (e.g., xa = zya).

3.1.2 boundary.f

This file contains several subroutines that set boundary conditions. bc_fundamental is
called twice per sweep to set up the fundamental variables and coordinates in the two ghost
zones on either end of a 1D sweep. These values are needed to compute parabolas at the left
and right edges of the grid. be_average is used by ppm to apply boundary conditions to
the zone-of-influence averages. bc_parabola applies boundary conditions to the parabolae
so that the remap can move material on and off the grid.

3.1.3 fictforces

This subroutine is called from evolve to calculate zone-centered and face-centered fictitious
forces at the beginning and end of the timestep for use in the finite difference equations. It
uses the values of ngeom to determine which loop to use. Fictitious forces appear whenever
the grid is not cartiesian; e.g. in a 2D problem in (r, #) coordinates, then the fictitious
forces would be centrifugal and Coriolis forces generated by angular momentum.

3.1.4 gravity

This subroutine is called from evolve to calculate zone-centered and face-centered grav-
itational forces at the beginning and end of the timestep for use in the finite difference
equations. It uses the values of ngeom to determine which loop to use. If no gravity (or
other external force) is used in the problem, use gravitynone.f. If you are doing a 2D prob-
lem with self-gravity, the proper way to deal with these forces would be to compute gravity
before you entered the sweep, and have gravity merely copy the necessary information into
the appropriate arrays.

3.1.5 ppm

This routine performs the Lagrangian evolution of the fundamental variables. First, flatten
is called to get the array of flattening coefficients, flat. parabola is called for each fluid
variable needed for the hydro calculation: pressure, density, and velocity. These parabolic
profiles (specified by sets of variables like pl, p6, and dp) are then passed to states to
compute the input states for the Riemann problem to be solved at each zone interface.
states returns the value of these variables averaged over the domain of influence of the
characteristics, giving the left and right states at each zone interface (e.g., plavg, pravg).
plavg(j) is the average pressure over the domain of influence on the left side of the zone
boundary separating the j — 1 zone and the jth zone. pravg(j) is the average pressure
over the domain of influence on the right side of the same zone boundary.

Next, bc_average is called to compute the averages on the edges of the vector by
applying the boundary conditions.

These input states are passed to riemann which calculates the time averaged value of
the pressure and velocity at each zone face, from jmin to jmax+1: umid and pmid.

Finally, evolve is called to update the fluid variables using the time-averaged quantities
umid and pmid.

3.1.6 flatten

Post-shock oscillations are generated by a variation of the width of the shock structure as
a shock moves across the grid. To reduce these oscillations, PPM generally uses a mixture
of 3rd order and 1st order zone profiles at shocks. This broadens the shock and reduces the
variation. For more discussion, see § 5.

The subroutine flatten loops over the 1D arrays and looks for strong, narrow shocks.
If it finds one, it sets the variable flat to a value (between 0 and 1) that will be used to
flatten out the parabolic profiles in that zone. If the shock is very strong, flat = 1, and
the routine parabola will use a first-order (flat) profile for that variable. Weaker shocks
will have a smaller value of £lat corresponding to a mixture of first and third order. If no
shocks are present in (or near) a given zone, flat= 0 and the parabolic profile derived in
parabola will be used as-is.

The variable shock is positive if a shock is in the zone, or negative if there is no shock,
based on the pressure gradient. If the zone is undergoing compression, as determined by
the sign of the velocity gradient (which distinguishes shocks from rarefaction waves), then
the steepness of the pressure gradient is stored in steep. Finally, the flat parameter is
set to the highest value of steep in that zone and the two neighboring zones, ie, a zone is
flattened if a strong shock is in that zone or only one zone away. The parameters used in
this routine are chosen based on extensive testing and the advice of C&Wand W.

3.1.7 paraset

This routine computes some geometric constants used by the parabola routine. These
values remain the same for a given geometry, and can be reused for different fluid variables
at the same time. In addition, the values computed at the start of the sweep can be used

at the start of succeeding sweeps because the grid is always remapped back to the same
location.

The array para is used to store these constants. It is dimensioned to the size (9,
maxsweep). The planar version of paraset only uses the first five. For a derivation of
these coefficients, see C&W.

The last four vectors are used in the more detailed parabolic interpolation for dealing
with coordinate singularities. This curvilinear version is considerably more complex and
slower, and is only advantageous near coordinate singularities. For that reason, these
corrections can be turned off by setting the variable axiscorrection = 0 (see § 3.3).

3.1.8 parabola

This subroutine calculates the parabolic profiles of the variable a and returns the coefficients
deltaa, a6, and al that describe this parabola:

a(§) = al+ z(ba + ab(1 — z))

=&
T = -

§it1 — &
In the one case of remapping the total energy, the values of al and deltaa are already
known, and we only need calculate a6 and apply the monotonicity constraints. Otherwise,
we calculate the ar’s (note that al(j+1) = ar(j)) according to C&W. In calculating the
ar’s we apply a simpler limitation than that given by eq. (1.8) in C&W. We require ar(j)
to be in the range of a(j) and a(j+1). This is important in the vicinity of shocks where a
steep pressure profile might lead to an overshoot in ar(j), giving a negative pressure just
in front of the shock. While our constraint will not steepen sharp gradients as would Eq.
(1.8) of C&W, it can be applied to a correct curvilinear interpolation scheme as described
in Blondin & Lufkin (1993).

If iflat = 1 (which is true when we are making parabolae for ppm, but not for remap)

then parabola uses the passed array of flattening coefficients, flat, to smear out steep
shocks.

O0<a<l.

Finally, parabola applies the monotonicity constraints. These constraints are very
important, because they damp out oscillations on a zone-to-zone length scale, which cannot
be accurately represented by the algorithm and must be eliminated. We apply two different
constraints: If the zone average value a is a local extremum, flatten the profile in that zone:
ar(j) — a(j). If the derived parabola introduces a new extremum, i.e., if the parabola
exceeds ar or al, then reset ar or al so that the slope — 0 at the side closest to where the
parabola exceeded the boundary value (see C&W). Monotonicity constraints help prevent
noise on one-zone length scales, which cannot be resolved by the algorithm, from growing.

3.1.9 states

This subroutine takes the parabolic profiles of pressure, density, and velocity given by
(al,da,a6)and computes the left and right states of each variable for input to the Riemann
solver. First, it calculates the fraction of the zone to be averaged using the average sound

10

speed in that zone times the timestep, divided by the width of the zone. A factor of 1/2
is included in the definition of Cdtdx to save multiplications later on. If the coordinate
is angular, the zone width must be multiplied by the variable radius to get a physical
dimension.

The averaged states are then computed using the formulae in Eq. (1.12) of C&W, with
the addition of force corrections to the velocity states. These corrections (of gAt/2) repre-
sent the time-averaged acceleration of the fluid to first order only. If geometry corrections
are required (currently implemented for radial, cylindrical and spherical), the velocity states
would be altered according to eq. (2.9) of C&W, but this version of the program does not
have these corrections. Note that other corrections may be desired at this point to account
for other source terms, including forces and energy sinks and sources.

3.1.10 riemann

The Riemann solver uses the left and right input states at each zone boundary and solves
the Riemann problem to obtain the velocity and pressure at the (Lagrangian) zone bound-
ary. You can think of the Riemann problem as a tiny Sod shock tube, starting with a
discontinuity in both pressure and density at the zone boundary. The Lagrangian zone
boundary will move with the contact (density) discontinuity. The Riemann problem has a
nonlinear solution and is generally solved by using some form of iteration. This particular
subroutine can be replaced by other Riemann solvers that may be more accurate or more
efficient.
The nonlinear equations to be solved at each zone interface look like (C&W, van Leer
1979): B
P—PL

W +(a—ur)=0
+1,

WE =G pn) (14 5=/ - 1)
pI;/]ZR — (ﬂ— ’LLR) =0

H/ _I_ 1
2"}"

(#/pm-1).

where p and @ are the pressure and velocity of the contact (density) discontinuity, and
PL, PR, PL, and pp are the initial pressure and density on the left and right sides. In
this situation the initial states come from averages over the zone of influence. We have
assumed that the equation for the Lagrangian wave speed of a shock is a sufficiently valid
approximation for a rarefaction wave so that only one wave speed need be calculated. To
start the iteration, the wave speeds Wy, Wg are approximated by the adiabatic Lagrangian
sound speeds, i.e., C? = v pr/pL, and the above equations are solved for p. In a smooth
flow this is all that is required. In the vicinity of discontinuities, we must iterate to converge
on the correct value of p. First, we find the current guesses for « based on the current guess
for p and the left and right wave equations above. Let us call these u} and u}. We then

W= o) (14

11

use the slope of the left and right adiabat (Z, Zg) in the u—p plane at these two points
(puy) and (p,uf),

2% W?
7= ——L_W
L Wg -I-C,% L
P Q*W]%
R_7W123—|—C]23 R

to extrapolate the tangents to the point of intersection, from which we find our next guess
for p:
ﬁn-l-l :ﬁn B ZL*ZR
Zr, + Zr
This new guess can then be used to start another iteration (compute wave speeds, solve
for p) until the desired accuracy is obtained. In practice, we always iterate five times on
all zones, although more efficient algorithms are certainly possible. Once a converged value
for P has been found, the value of @ can be found by combining the above equations into
an expression for :

(up — wur).

— Wi, ur, + Wg ur — (pr — pr1)

Wi + Wg

3.1.11 evolve

This subroutine uses umid and pmid, as determined by the Riemann solver, to solve the
finite difference form of the Lagrangian equations of hydrodynamics given by Eq. (2.10)
in C&W. The first step is to evolve the locations of the grid faces, xa, which move at the
velocity umid over the whole timestep. Next, the new zone volumes are computed according
to the geometry flag passed from ppm. At the same time the average area of the zone face,
amid, is computed to account for non-planar geometry in the hydrodynamic equations.

Evolution of the density is particularly trivial. Because the total mass in the zone
remains constant in a Lagrangian calculation, the change in the zone-averaged density is
inversely proportional to the change in zone volume. The velocity is updated according
to the pressure gradient and the forces, both fictitious and external. The total energy is
updated according to the enthalpy gradient and the external forces only. The pressure is
found by subtracting the kinetic energy from the new total energy.

Note that fictitious forces do not change the total energy, but rather redistribute the
momentum between the different coordinate directions. If included in the energy equation,
the change due to fictitious forces in one direction should exactly cancel the change found
in the orthogonal direction.

3.1.12 remap

This subroutine remaps the new fluid variables from the evolved Lagrangian grid back onto
the original, fixed Fulerian grid. The same subroutines used in ppm are used to compute
parabolic profiles of the conserved quantities, and the total amount of those variables found
in overlapping subshells are returned to the Eulerian zone. Note, however, that no flattening
at shocks is used in the remap step.

12

The first order of business is to compute the new mass elements dmu and the width of
the overlapping subshells, delta. Note that delta can be positive or negative, depending
on the sign of the velocity at the zone interface. As in the hydro step, we call paraset to
get the parabolic coefficients, paracoff. Since the new Lagrangian coordinates are always
different, we must make this call every time. When remapping, no flattening is desired,
so we pass 0 for the flattening flag along with a dummy array in place of £lat. Next we
make individual calls to parabola to get the profiles of the variables to be remapped. The
variables in the ghost zones have already been set before the Fulerian evolution step.

There are two possible forms of remap: the density and velocity are always remapped,
but we can choose to remap either the total energy or the internal energy. The value of
the variable mremap is used to pick one of the two methods. The reason that we implement
both methods is that each has its weak points. Remapping the total energy (mremap = 0)
means that the internal energy must be computed by subtracting the kinetic energy, which
is formed from the separately remapped density and velocities, from the total energy. Since
each of these terms has independent errors, the internal energy might end up negative if
the kinetic energy dominates the flow. Remapping the internal energy (mremap = 1), on
the other hand, will not strictly conserve total energy.

As discussed in C&W, a “fix” must be implemented for the remap of the total energy
to try to account for the fact that total energy contains the square of the velocity. A
parabola fit to the total energy will not match the square of the parabola fit to the velocity;
i.e., although we have £ = P/p + %uQ for the zone averages, the same will not be true
for each point on the respective parabolic interpolations. To compensate for this possible
discrepancy, C& Wsuggest using the left and right values of the velocity and internal energy
to construct the total energy profile. In this way the different parabolae will at least satisfy
the above energy equation at the zone boundaries, which is where the calculation of the
subfluxes originate. (In the limit of small grid motion, we will use only the quantities very
near the zone interfaces.) Loop 100 does the construction of el and de as described above,
and the subsequent call to parabola passes a flag to tell parabola that the left and right
values are already determined.

Next, a new boundary condition problem raises its head: if there is any motion of the
ghost zones onto the grid at the boundaries of the grid, we need to know the variable
profiles in the first ghost zone, jmin-1 and jmax+1. We set these values based by calling
the routine be_parabola.

We remap the conserved quantities in two steps: First, we compute the integral of
the conserved quantities in the overlapping subshell using the parabolic profiles calculated
above, and second, we update the zone averages by adding and subtracting the appropriate
quantities in the subshells.

The total quantity of a given variable in a subshell, or “flux,” is stored in an array;
fluxr (total mass), fluxu, fluxvl, fluxv2 (velocities), and fluxe (total energy) equal
to the integral of that variable over the volume of the subshell. If delta > 0 the flux is
positive and equal to the integral from the right side of zone j — 1 back to the original zone
boundary, xa0(j). If delta < 0 the flux is negative and equal to the integral from the left
side of zone j forward to the original zone boundary, xa0(j). The advection is then just a
matter of redistributing these subshell fluxes to the appropriate zone:

13

The quantities to be remapped are (1) the total mass, fluxr, (2) the momentum, fluxr
x fluxu, (3) either the total energy, fluxr X fluxe, or the total internal energy, and (4)
the transverse velocities fluxvl and fluxv2.

The remap routine in VH-1 is not capable of a completely general remap from any grid
to any other grid. It is designed to be used to remap from a grid to another grid which has
not moved any grid point more than one zone, i.e. one in which a single timestep of hydro
constrained by a Courant condition has taken place.

3.2 The rest of the program

The main driver for VH-1 is mainld.f, main2d.f, or main3d.f. This program reads
the input namelist file, sets up the grid (equalgrd.f) and initializes it (by calling some
initfooNd.f file), prints output using (prin.f and dumpNNd.f), constrains the timestep
(timestepNd.f), calls the appropriate sweep routines, and other general managing tasks.
In this section we will describe the driver and each of the peripheral subroutines.

3.2.1 mainNd.f

The input of data and general management is performed the same way for 1D, 2D, and 3D
simulations. First some defaults are set, and the two main namelist files are read out of
indat. The contents of these namelist files are described in §3.3. A quick check is performed
to make sure the declared arrays are large enough to handle the problem. A history file
is opened and a summary of the parameters of the run is written to it. main2d.f and
main3d.f allow a previous run to be restarted, and if this is a continuation, the dump
file is read. If the run is not a continuation, the appropriate init file is called. The initial
timestep is determined by a call to timestep.

The main loop consists of calling the appropriate sweep subroutines and dtcon, in-
crementing loop variables such as ncycle and time, and performing dumps and human-
readable prints based on the settings of the ncycp, ncycd, timep, and timed variables.
In 2D runs the cycles are split into even or odd values of ncycle so that the order of sweep
calls is XYYX (to approach second order accuracy). When the program has reached either
the time or iteration limit, it takes a final dump and exits.

Whenever a time barrier, either the end of the run or a timed dump or print, is reached,
the timestep is temporarily reduced to the timestep necessary to exactly reach the desired
time. Since the timestep routine uses the previous timestep as a limitation to only allow
the new timestep to increase slowly, we save the actual timestep in the variable savedt,
and restore it before computing a new timestep. If we neglected this detail, the timestep
could drop dramatically and take quite a while to recover if a dump-time was a very small
time from the ending time of some timestep.

3.2.2 equalgrd

This utility routine generates an equally spaced grid, and is used to build the coordinate
axes. It does not generate anything for ghost zones, because ghost zones only exist inside
the sweep routines.

14

3.2.3 initoned, inittwod, initthreed

This family of subroutines initializes the desired problem. It must generate values for all
the fundamental variables in all the grid cells, and may read a namelist out of indat to find
parameters. Note that the variables must be averaged over the volume of the zone, which
can be significantly different from the value at the center of the zone in some geometries and
situations. Many of our examples do not practice such averaging, but you should beware
unusual effects from using zone-center values.

3.2.4 timestep

This subroutine loops over the grid and calculates the limiting timestep based on the CFL
(Courant-Friedrichs-Lewy) constraint using the parameter courant, set in the fundamental
namelist (see § 3.3). For multidimensional grids with angular coordinates, angular coor-
dinates must be multiplied by the radius to get physical dimensions, and hence physical
times. The limiting time step is determined by

dl = courant * max(Az/uz, Ay/uy, Afcs),

where A = max(Az, Ay). This timestep can be much larger than the timestep used by a
direct Fulerian program that must use the sum of the fluid velocity and the sound speed,
A/(uz + ¢5). An additional constraint is implemented that does not allow the timestep to
grow too quickly, in this case limiting the new timestep to 1.1 times the old timestep. If
source terms are included in the calculation, they may impose additional constraints on the
timestep. A value of courant of 0.7 or less is recommended to ensure stability. The 1D
Sod shock tube test problem provides a good example of the error introduced at a shock
front when a too large or too small a value of courant is used.

If the timestep drops more than 50% in a single timestep, a warning is printed. This
often indicates a problem, such as a timestep dropping to zero, or a situation such as
beginning of the Sod Shock Tube, where large velocities are generated in one timestep and
so the initial timestep was not small enough.

As a special case, a negative input timestep will result in no timestep increase limitation,
and no warning. This is used to initialize the timestep the first time through.

3.2.5 printNd.f

This subroutine should be altered to output the fluid variables in a format appropriate for
your individual use. We use this output for debugging and simple graphics.

3.2.6 dumpNd.f

This subroutine writes out an unformatted but sophisticated dump of the state of the entire
program, sufficient to restart the computation at the time of dump. Version information
is written into the file, so that it is possible to restore old versions into new programs. We
also have IDL, and FORTRAN programs that read these dumps to make graphical output.
Finally, these dumps can be converted to ASCII to be transported over the network between
dissimilar machines.

15

3.3 Running VH-1

VH-1 must be customized before it can run on a new problem. Normally this involves (1)
including the proper input data in the file indat, (2) setting up the initialization subroutine,
initfooNd.f, and (3) possibly altering the output subroutines to write out the data in
the user’s desired format. This is a minimal list of required changes, and more difficult
problems may involve more changes to the program for proper results. Such changes might
involve additional body forces, switching to Lagrangian mode in 1D, adding new boundary
conditions or incorporating additional source terms. Often the user will add parameters to
global.h for use on a specific problem.

The file initfooNd.f will contain the code needed to set up the initial conditions. This
code is responsible for setting the initial values of the rho, p, and the velocities. If desired,
this routine may read a namelist out of the indat file.

The information needed for a specific run is written in the file indat. The user is
encouraged to adapt this file to suit their needs. indat contains a series of namelists, most
of which have default values and need not be changed.

The fluff namelist contains the information that will be reset every time a given run
is started or restarted from a dump file. £1uff contains the following variables:

&fluff
dumpfile = >(’’dump2d.’’, i5.5)7,
printfile = ’print2d’,
historyfile = ’history2d’,
ncycend = 2000,
nprint = 10000,
ndump = 20000,
tprint = 1.e7,
tdump = 2.e7,
endtime = 2.4e8

&end

The file parameters are the names that will be used for the dump, print, and history
files. The dumpfile specification can either be a constant string (e.g. ’foo’) or a format
expression which will be used with the cycle number. The variables beginning with n are
expressed in cycles, and tell when prints, dumps, or the end of the run will take place. The
variables beginning with t specify the same things in units of time. To generate a movie
of a run, for example, you will often want to dump at specific times. To make a run take
a given amount of CPU time, on the other hand, you want to run to a given number of
cycles. Notice in the example above that ncycend < ndump, so we are in fact dumping only
at a specific time, and never at a specific number of cycles.

The fundamental namelist contains information that should remain the same through
an entire run, even if it is restarted. The fundamental namelist contains:

&fundamental
iorder = 3,

16

gam = 1.4,
nzones = 100,
xmin = 0.0,
Xxmax = 100.0,
ngeom =0,
nleftbc = 0,
nrightbc = 0,
courant = 0.7,
tinitial = 1.0
&end

The order, 1 or 3, determines if the Godunov or PPM algorithm is used. gam is the
polytropic index gamma. nzones specifies the number of physical zones. In 2D, there are
nxzones and nyzones. xmin and xmax give the physical dimensions of the grid. ngeom gives
the geometry. The following geometries exist in the current version:

= cartesian

= cylindrical radial
= spherical radial
cylindrical theta
= spherical theta

= spherical phi

O W N~ O
1}

In order to compute a 2D spherical polar geometry, for example, nxgeom = 1 and nygeom
= 3 would be appropriate.

The left and right boundary conditions for each dimension are next. Recall that we
define “left” to be the boundary at the smaller coordinate position. The current possibilities

are:
0 = reflecting
1 = inflow/outflow
2 = fixed inflow

The Courant condition should be around 0.7. tinitial is a constant which is multiplied
into the initial timestep. It is used for situations where the gas on the grid is motionless
at the start of a computation, but will quickly end up moving supersonically. In this case,
it is much better to use tinitial to reduce the intial timestep than to let a cycle be done
with too large a timestep, which could result in the courant condition being violated.

The sweep_globals common contains information that is used by the sweep. This is
mostly debugging information, but a few physical constants are here as well. sweep_globals
contains:

&sweep_globals
scalar =0,
debugremapx

1}
o

17

debugremapp
debugcourant
debugevolvep
debugevolverho
mremap
minimump
minimumrho

nou
. .

-

-

maximumv =

smallp

axiscorrection
&end

1}
= 2, O O O OO O O O

The debug variables should be set to 1 to turn on the appropriate debugging tests.
mremap should be 0 for a total energy remap, and 1 for an internal energy remap. The
minimum and maximum variables are used to make sure that various quantities have legal
values, namely that the velocity should not exceed the speed of light, and pressure and den-
sity should be positive. smallp should be set to a pressure smaller than the smallest pressure
expected to be physically meaningful, and is used in riemann. Finally, axiscorrection
determines whether or not the coordinate corrections are applied to the interpolated parabo-
las, as explained in Blondin & Lufkin (1993). 1 means apply them, 0 means do not.

The units common contains information that is used to convert from code units to
physical units. For example, if you use G = ¢ = 1 units within the code but would like cgs
units in your print files, you can enter appropriate conversion factors here.

The program will test to make sure that the various parameters are consistent. For
example, the global array declarations must be large enough for the number of zones.

Other forms of customization may be necessary for other problems. Occasionally bound-
ary conditions are dependent upon the position within the computational grid. This prob-
lem arises in two of the test problems provided with VH-1: the oblique shock and the Mach
3 wind tunnel with step. In this case, sweepx2d.f and sweepy2d.f are altered to set the
value of the boundary condition flag as a function of grid location.

3.4 The Godunov Code

In addition to the PPM implementation, this program also includes a first-order Godunov
implementation, which represents the variables as constant values within zones (as opposed
to PPM’s parabolae), but still uses a Riemann-solving technique for evolution. The Go-
dunov subroutines can be found in files such as remap1.f, while the PPM subroutines are
in files such as remap3.f. The Godunov version is useful for code comparisons such as

Woodward and Colella (1984).

4 Test Problems

Several test problems are included with the distributed version of VH-1. These problems
serve two specific purposes. First, they provide the new user with immediate, working

18

examples with which they can begin to learn how to operate the program. It is highly
recommended that the new user begin by running all of the enclosed test problems to
ensure that the current program is working properly for a variety of boundary conditions
and geometries. The second purpose of these sample problems is to provide a series of tests
that can be rerun each time the program is altered. In addition to the problems presented
here, it will prove useful to add problems that are similar to the types of flow problems the
user intends to work on with VH-1. In general, the closer the test problem is to the actual
working problem, the less chance for errors to arise through “insignificant” changes in the
program.

4.1 Sod Shock Tube

The Sod shock tube has become a standard test problem in numerical hydrodynamics (XXX
ref.). The initial conditions are very simple: A contact discontinuity separates two regions
with different pressures and densities. In our standard case, the density and pressure on
the left are equal to 1, and the density on the right side of the contact is 0.125 and the
pressure is 0.1. As the evolution begins, a shock propagates to the right while a rarefaction
wave travels to the left. In the standard case these waves are relatively weak, and most
hydrodynamics programs produce good results. A more demanding test is to increase the
density and pressure ratios by an order of magnitude.

Figure 2 shows the flow variables for the standard Sod shock tube problem at ¢ = 23.0,
along with the analytic solution drawn as a solid line. The shock and contact discontinuity
are both very sharp.

This problem can be expanded to multiple dimensions by placing the discontinuity
across a 2D or 3D grid. For the 2D test, we have positioned the contact at a 45° angle
so that the shock and rarefaction wave propagate diagonally across the grid. Figure 3
shows the density structure of this 2D shock tube problem where the initial high density
gas was in the lower left corner. The image is very close to symmetric about the diagonal,
but some small differences can be seen. This image is at ¢ = 0.871. The shock wave has
reflected off the far walls and is converging back towards the original corner. The contact
discontinuity is beginning to ripple after the recent passage of the reflected shock. This is
the Richtmyer-Meshkov instability.

4.2 1D Advection of a step in density

This test is a very simple yet interesting test in which the pressure is equal everywhere, but
a step-function in density moves steadily across the grid. Because the program contains
numerical dissipation, the step will gradually be smeared out. Varying the Courant number
and numerical technique between PPM and Godunov is interesting.

4.3 Double Mach Reflection

This problem is taken from Woodward & Colella (1984), and is used extensively as a test
problem because of the complicated structures generated and the availability of experi-
mental solutions to compare with numerical results. A shock is set at an angle of 30° to

19

the grid, and is allowed to reflect off the lower boundary. The shock is anchored at the
lower left corner by applying outflow boundary conditions for the first few zones on the
lower boundary (see Woodward & Colella (1984) for details). Figure 4 shows the density
structure at { = 0.2. This figure can be compared with Figure 9 of Woodward and Colella.

4.4 Mach 3 Wind Tunnel with a Step

This test problem is again taken from Woodward & Colella (1984). In this case a uniform
grid is initialized with planar supersonic flow from the left. A step is put into the flow
downstream from the left boundary by adjusting the location of the lower reflecting bound-
ary with the sweepx.f and sweepy.f subroutines. The simulation is stopped at a time
t = 4.0, and the results are shown in Figure 5. This simulation can also be compared with
the results of Woodward and Colella (see their figure 7). We have not implemented the
corrections to the grid zones around the step corner as described in Woodward and Colella.
This affects the flow solution along the surface of the step, and as such this region differs
from the solutions published in Woodward and Colella. We have run this problem with such
corrections and obtained good results, but have not incorporated the added complexity into
the distributed test version. The contact discontinuity along the top of the flow (y ~ 0.8) is
Kelvin-Helmholtz unstable, and slight wiggles can be seen even in this low resolution run.
The seed perturbations for this instability are attributed to postshock noise (see § 5).

4.5 Supersonic Flow Past a Cylinder/Sphere

We have included a generic test problem of a plane parallel flow past a rigid sphere or
cylinder (for ngeom = 2 or 1, respectively). This test problem verifies the geometry de-
pendent terms and fictitious forces by evolving a plane parallel flow on a curvilinear grid.
The inner radial boundary condition is reflecting (the solid sphere/cylinder), and the outer
radial boundary is set for free inflow /outflow. The angular boundaries (§ = 0, 7) are set for
reflecting conditions. The grid is initialized with a uniform flow at Mach number umach set
in init.f. The resulting simulations compare favorably with shadow-graph images of similar
experiments in fluid flow. In particular, the presence of the slip line and a shock reflecting
off the axis behind the sphere agree well with supersonic flow experiments. Figure 6 shows
a Mach 3 flow past a sphere. Similar results are obtained for flow past a cylinder.

4.6 Hawley-Zabusky 2D Angled Shock Tube

This 2-dimensional problem consists of a shock hitting a contact discontinuity at an angle.
Net vorticity is generated by such a situation, and the integrated vorticity can be computed
given a few assumptions (ref HZ.) It is interesting to vary the resolution and compare the
integrated vorticity value (or is it?)

4.7 1D Hydrostatic Equilibrium in a Polytropic Star

One easy technique for modeling a star is to use a polytropic equation of state (P = p7).
This test sets up a 1D star in hydrostatic equilibrium, and watches it sit still. Actually,

20

because the initialization routines are not exact, the star will oscillate a bit. The interesting
question then becomes: is the star in equilibrium on the sorts of timescales we are interested
in? For example, a supernova computation needs a 10 Mg star to be steady on a timescale
of 1 hour.

4.8 1D Supernova in a power-law star

This problem is computed numerically by Mueller et. al. (1989) and Lindahl (1992), and
an analytic discussion is provided in Chevalier (1976). We find that if we use flattening
at the shock, we have an evacuated center, which is predicted by theory. The program
Prometheus, used by Mueller ef. al., does not have an evacuated center.

4.9 1D Supernova in a polytropic star

This test problem is also computed numerically in Mueller et. al. (1989) and Lindahl
(1992).

4.10 Geometry test problems

We have also included some test problems which illustrate the effects of the geometric
corrections discussed in Blondin & Lufkin (1993).

5 Dissipation

PPM is a very nice method for compressible hydrodynamics, but it does have an Achilles
heel. When strong shocks propagate slowly across the numerical grid, low-frequency noise
is generated in the post-shock region. This noise is a consequence of the narrow shock
structure generated by PPM. Because the shock is resolved into only one or two zones, the
exact profile of the shock is dependent on the relative location of this narrow profile with
respect to the zone faces. When the shock front crosses a zone face, the profile necessarily
changes. If the shock is moving relatively fast with respect to the grid, these changes result
in high frequency noise that is quickly damped. Slowly-moving shocks, on the other hand,
produce low frequency noise that the highly accurate PPM algorithm is able to accurately
follow without much dissipation. By page count, C&Wspend 1/3 of their paper discussing
dissipation mechanisms to try and minimize this problem!

This problem is illustrated in Figure 7, where we show the post shock structure of a Mach
10 shock moving at 1% of the shock speed with respect to the numerical grid. Intuitively
one could imaging trying to suppress this instability by either (a) broadening the shock
structure so that it does not change appreciably while crossing the grid, (b) increasing the
relative velocity of the shock so that the generated noise is of suffliciently high frequency
that it is effectively damped, or (c) adding some sort of artificial dissipation at shock fronts
to dampen any high frequency component. These are in fact the three options suggested
by C&W: flattening, grid wiggling, and artificial viscosity. The first of these options, shock
flattening, has proven to be simple, robust, and unobtrusive. The second of these, grid
wiggling, is found to be beneficial in some circumstances, but can be rather cumbersome.

21

The last option, artificial viscosity, has not been shown to work with VH-1, despite the
fact that it is beneficial in many other versions of PPM. This remains a mystery to us. We
will discuss these three techniques below, but we have only implemented the first of these
options in the version of VH-1 we are distributing.

5.1 Shock Flattening

This technique involves a reshaping of the interpolated parabolae in the vicinity of shock
waves so that the shock is effectively broadened over a couple zones. This is accomplished in
two steps, (1) the calculation of a flattening parameter based on the presence and strength
of a shock (for VH-1 this is done in flaten.f), and (2) the mixing of the interpolated
parabola and the zone average (for VH-1 this is done in parabola.f). In the extreme limit
of everything being flattened, this method would transform to the original Godunov scheme,
using only zone averages to compute the input states for the Riemann problem. In Figure
7 we also show the same problem computed with flat(j) = 1 in both the hydro and in
the remap step, i.e., a Godunov scheme. The postshock oscillations are indeed removed,
but the shock is now spread out over many zones (cf. C&W, who find some noise remains
with complete flattening).

C&Wdescribe several stages of complexity in computing the flattening coefficient. We
have found that the more complex methods do not show significantly better results than the
simplest method in our slowly moving strong shock problem. We have therefore included
only this simple approach. Figure 7 also shows the shock structure when flattening is applied
as it is implemented in the release version of VH-1. While there is still some postshock
noise, it is of substantially smaller amplitude than the noise in the unflattened solution.

One variation that we have not included is detection of a shock transverse to the current
sweep. This variation could conceivably make a difference in cases where a strong shock
is sitting nearly parallel (but not exactly parallel) to the numerical grid. In this case
the postshock structure is flattened perpendicular to the shock front but not along the
direction of the shock front. Instituting a multidimensional flattening routine is much more
cumbersome than in 1D, and we have not found the results sufficiently encouraging to
warrant such an addition to the standard program. In these difficult cases we find that grid
wiggling provides a more effective suppression of post-shock noise.

5.2 Grid Wiggling

The easiest way to avoid this whole problem is to only work on problems where the shocks
are rapidly moving across the numerical grid. Unfortunately, it is often the case that the
interesting thing one is studying is associated with the shock, and it is desirable to have
the shock in one location on the grid throughout the simulation. If you cannot move the
shock with respect to the grid, move the grid with respect to the shock. This is the essence
of the grid wiggling technique described in C&W. At each timestep one can move the grid
back and forth, effectively smearing out the steep shock profile over more than one zone.
Omne can imagine going about this in several ways:

(1) As in C&W, wiggle the grid at each zone location according to the amount of dissipation

22

needed and then wiggle back to the original grid on the next timestep.

(2) Wiggle the entire grid a fixed fraction of a zone each timestep, alternating directions of
the wiggle each time.

(3) Wiggle the grid on the remap step and then re-remap the variables back onto the original
grid at the same timestep.

In more than one dimension the grid must be orthogonal inbetween timesteps, so that
if option (1) were used there must be two X sweeps (wiggle forward, wiggle backward)
followed by two Y sweeps. In practice this is done anyway to minimize cross-term errors
in the directional splitting. We find this technique to be most effective when there is
a strong shock almost parallel to the zone gridding. In this case small changes in the
shock/zone orientation from row to row can produce large differences in the postshock
entropy, generating substantial postshock noise along the inside surface of the shock. If
the grid is wiggled along the shock front (rather than across it), these postshock variations
from zone to zone are effectively smoothed out.

Option (3) requires an extra remap step and hence is less efficient, but we include it
here because there may be circumstances where it is the only feasible option.

While using a fixed-length wiggle will add dissipation where it is not needed (away from
shocks), this added dissipation is not significantly more than what is already present in the
algorithm (which is very small). We have not found any significant degradation when a
fixed- length wiggle is used rather than a selective wiggle as described in C&W, although
we have not performed any quantitative testing of these different possibilities.

5.3 Artificial Viscosity

Artificial viscosity has been used effectively to dampen short wavelength oscillations in
several versions of PPM (e.g., programs written by Fryxell, Balsara, and Stone). We have
not been able to formulate an artificial viscosity term that improves the performance of
VH-1, and so have not included it with this program. The reason why VH-1 behaves in
this manner compared with other implementations of PPM is not clear.

6 Boundary Conditions

Choosing good boundary conditions for a problem can sometimes be somewhat subtle.
This section explains the types of boundary conditions commonly used in VH-1, and the
implications of PPM to these boundary conditions.

6.1 Reflecting

One of the simplest boundary conditions is the reflecting boundary condition: Waves hit-
ting such a boundary should reflect, and should conserve energy and mass. This goal is
accomplished by choosing variables in the ghost zones — the zones on the other side of
the boundary — which have equal density and pressure but opposite velocities to the zones
approaching the boundary. In essence, we hit each approaching zone with an equal and
opposite ghost zone. The resulting collision results in no boundary motion and lots of hot,

23

compressed, stationary gas. This gas will then expand, and that provides the reflection off
the boundary.

If there was just one ghost zone, we would implement such a boundary by setting the
pressure and density in the ghost zone equal to the zone adjacent to the boundary, and the
velocity equal to but opposite in sign to the velocity in the zone adjacent to the boundary.
However, since PPM uses 2 zones to the left and right of each zone to compute the profile of
the variables in each zone, it is also necessary to consider what we would like the parabolae
to look like at the boundary: we want them to be symmetrical. This means that the
pressure and density will have a zero derivative at the boundary. This also means that it
is important that the zone widths be set up correctly. If the boundary is at the coordinate
origin and you have a logarithmically-increasing grid, the ghost zones will be at negative
coordinates, and the ghost zone farther away from the boundary should be wider than the
ghost zone closer to the grid.

6.2 Fixed Inflow

In some problems, such as the advection of a step function of density (4.2) or the Hawley-
Zabusky 2D angled shock tube (4.6), one boundary has totally specified behavior, i.e.
inflow of material with a given density, pressure, and velocity. Such a boundary is easily
implemented by giving the ghost zones the specified values. A wave propagating up to such
a boundary will simply disappear from the grid, and not cause any long-term consequences.

Note that the implementation of fixed inflow in VH-1 is quite limited, suitable for the
test problems mentioned in this manual.

6.3 Inflow/Outflow

Boundaries at which material should be able to simply “leave the grid” can be very trouble-
some in any hydrodynamics program. If the boundary is supersonic outflow, information
from the boundary generally cannot propagate back onto the grid, so this one case is easy.
Cases in which the outflow is subsonic, or at which you wish to have mass enter the grid
are difficult.

Imagine a simple scheme in which we set the variables in the ghost zones equal to the
zone on the boundary. Then you might expect that waves would be able to propagate off
the grid. They can, but the boundary is not necessarily stable.

For the subsonic inflow case, a wave propagating upstream to the boundary will cause
a change in the inflow which will persist at later times. Once the values in the boundary
zone are changed, they will remain changed, because the material from the ghost zones
will remember and reinforce the new value. For example, if the density is reduced in the
boundary zone, the inflow will be reduced, tending to keep the density low. This is why
we used fixed inflow boundary conditions for test problems X and X. For the outflow case,
other sorts of problems appear. For example, consider a spherically-symmetric situation
in which material is accelerating off the outer edge of the grid. The density should be
falling as 72, but a straightforward boundary implementation would have the density in
the ghost zones equal to the density in the final zone. Therefore, mass flowing off the grid
would bounce a bit in the boundary zone, and waves might propagate back onto the grid.

24

There is no general solution to this problem. We recommend watching subsonic in-
flow /outflow boundaries carefully for reflected waves, or use of other forms of boundary
conditions.

6.4 Other Boundary Conditions

If you implement other forms of boundary conditions, keep in mind that PPM’s parabolic
interpolation routine uses information from 2 adjacent zones in each direction to construct
parabolae in a given zone. Also keep in mind that it is a parabolic interpolation, which
simply cannot accurately fit some functions. For example, a variable which has an initial
r~1 distribution is quite difficult to deal with at » = 0, because it is singular and does not
have a zero first derivative. Even distributions which integrate to finite values in the first
zone might not have zero first derivatives. A typical trick for dealing with such a boundary
condition would be to add a turn-over in the innermost 10 zones, such that the distribution
becomes flat in the center.

7 Optimization and Efficiency

The version of the code presented here is optimized for either scalar or vector computers.
A simple but extensive rewrite is needed to make the code suitable for current parallel
computers and compilers using Fortran-90 array notation.

On a scalar machine, there are few pitfalls. The guts of the code is the sweep, which takes
a set of input vectors of length N, and performs around 1,000N floating point calculations.
This entire computation will fit into the cache on most modern workstations; the maximum
storage used is around 60 maxsweep words, which is a modest number of bytes for maxsweep
= 512. Busting the on-chip cache on an Alpha costs us about a factor of 2 in performance.

Inside the sweep, there are 2 important routines: parabola and riemann. The Riemann
solver is generally limited by the speed of floating square root and divide, so we have left it
in a form which doesn’t minimize the loads and stores. The parabola routine has a lot of
logical operations, in addition to quite a few loads and stores. Most of these loads hit the
cache. You may be able to speed this routine up a bit by fiddling with it.

Since the code has good locality of reference, most scalar machines perform very well
on any size problem, as long as the global arrays fit into physical memory and the sweep
arrays fit into cache. Many codes from supercomputers have unfortunate cache and TLB
thrashing characteristics, or require large main memory bandwidth. VH-1 does not.

On a vector machine, all the inner loops in the sweep should vectorize. No use is made
of scatter/gather. While the MFLOPS for some routines, namely parabola, look low, this
is because of the large numbers of logical operations. It is possible to rewrite parabola to
have higher MFLOPS, but this would not change the overall runtime significantly. The true
measure of the speed of the code is the work performed, which we express in zone-cycles
per second, which is the number of zones in a test problem multiplied by the number of
cycles and divided by the CPU time consumed.

If you wish to run this code on a parallel machine, several strategies are possible.
On a data-parallel machine, clever compiler could determine that the sweep is a pure 1-

25

dimensional operator, and parallelize around it. As far as we know, no such compiler
exists. The most common workaround is to produce separate versions of the sweep for each
direction. For example, for a 3D version of the code, 3 versions of the sweep would be
needed. The sweep would work directly on the 3D global arrays. The first would change
all the 1D loops in the sweep into 3D loops which work in the X direction. The second and
third versions would work in the Y and Z directions, respectively. The drawback with this
technique is that the 1D temporary vectors in sweep become 3D arrays, and the memory
usage of the code balloons. This memory is being wasted, however, in the case where there
are many virtual processors on each physical processor, which is the case with machines
such as the CM-5 and Cray T3D. There is no easy work-around for this problem, short of
a compiler which is capable of blocking the entire sweep.

Alternately, the arrays could be explicitly divided into cubes and the code could use
messsage-passing. This would not be that difficult; the riemann solver is trivially parallel,
so only the parabola, paraset, evolve, and remap routines would have to pass information.
The communication should overlap quite well with computations.

For more modest levels of parallelism, on machines like the few-CPU boxes from Sun,
SGI, and DEC, we suggest creating a bunch of threads to run one sweep each. A 3D
problem 1283, for example, has 1282 sweeps which could be done in parallel. This method
only works for shared-memory machines. You might also need to reorganize the global
arrays for better locality. Another technique would be to use the allegedly highly-portable
fork()/mmap() method.

I should also discuss Bruce’s clever MasPar parallelization by sections, and my mildly-
clever transpose f90 optimization.

26

