Building a Web-Scale Search
Engine with Per]

Greg Lindahl, CTO, blekko
greg@blekko.com - @glindahl - wumpus

* This is my first YAPC

* They scheduled me against Rick?!

Personal histories

The Search Business in 3 minutes

Why we chose Perl

Writing NoSQL in Perl

The search engine app — event-driven progr.
Continuous Everything

Updating perl (and CentOS)

Open Data / Open Source

Our secret sauce

Personal Histories

me: icon, usenet? or irc?, merlyn, camel book
http://www.pbm.com/~lindahl/

really a supercomputing guy: Fortran, MPI
Contrib to ircd (founded efnet), binutils, emacs

others: GhnuHoo => NewHoo => ODP / dmoz
Netscape => AOL => AOL-TimeWarnerMegaCorp
Popular open data dataset, inspired Wikipedia
All of us know a lot of other languages

The Search Business in 3 minutes

 Some people say building a real search engine
costs S1 billion

— and by real, | mean multi-billion-page crawl and
index, not using Google/bing’s index
* Recent “real” failures: cuil, SearchMe; they
raised ~ $S30-40 million, hire 80-100 people

III

* The only successful new “real” engine since
Google is the bing re-write! (S1B loss/year)

 We felt real innovation was possible only if we
had our own crawl and index

What our marketing team says we built

blekko seo
ROCKZi T API Partners

blekko \ /

Search Technology

4 ok
Distributed Computing Platform
Crawler
Indexer

Machine Learning Ranker
Query classifier

Content API’s Ad API’s
Crawled Web

* Build the basics of a search engine

* Try some innovations, most of which will fail
 Don’t die on launch day, have a long runway
 Try some innovations, most of which will fail

e Profit!

e (we didn’t really have a plan)

* Keep the team small: build an environment
that makes programmers efficient

Choosing perl

* “Maybe we should switch to Python
— basically the same language
— easier to hire”

 Went and bought Python books
* 1 week later: “Anyone read their book?”

* Allrighty, Perl it is.

How did that work out?

* Hired some people who loved perl and
wanted to work for an awesome startup

* Hired lots of smart people who didn’t know
perl, but knew Python/Ruby or Java

* No complaints about “resume damage”

* No problem hiring during the Silicon Valley
hiring crunch

 We succeeded in making our programmers
very productive

A Search Engine

Query

vl . Front End

. Crawler .Extractor. Ranker . Indexer

NoSQL Distributed Computing Infrastructure

The Real Diagram — lots of feedback

Query
Analyzer

Query

. Front End SERP
> < >
KB | DIG |

J

. Crawler . Extractor . Ranker . Indexer

NoSQL

 “Let me explain. No, there’s not time. Let me
sum up.”

* Lots of existing NoSQL alternatives, but

— We want a bunch of unusual features that other

people wouldn’t care about — and we’d be
extreme users overall

— Choice: understand all the code, or write all the
code

— Plus, all that existing stuff is in Java. Screw that.

NoSQL in Perl

* Lots of great building blocks
—10::AlO
— JSON::XS — hacked into our own solution
— AnyEvent
— ... 397 more CPAN distributions

 Need: Map/Reduce

* Need: a way of expressing efficient
transactions

Map/Reduce without the Reduce

sub foo {
return if $pm->MAPJOB();

while ((Surl, Sdoc) =
Spm->nextrow('/crawl', S$Surl)) {
foreach word in doc
Spm->add(“/wec”, $word,{ count=>1 });

* No reduce phase

* Writes to the database are made through
combinators (comb_add in this case)

« Transactional data structures
— add, min, max, delete, average, ...

Associative: Can combine before delivery

— In process, before they’ re sent to the local
write daemon

— Writer daemon, before delivery to buckets
— Bucket daemon, before delivery to disk

Preferably commutative
— who’s first in a cluster?

They allow sub-cell atomic updates
Minimizes operations at the disk

Combinators reduce the total work

PROCESS 1 PROCESS 2 PROCESS 1 PROCESS 2

TopN combinator

e table: /crawl/32/url
* row: blekko.com/, column: inlinks

rank

key

anchortext

900

nytimes.com

new search engine
blekko

540

techcrunch.com

blekko removes
spam

www.ehow.com/
blekko

our enemy

Writing the search engine app

* Sits on top of the NoSQL stuff
e crawl => extract => index

* Needs a lot of event-driven programming

— because we aren’t using threads, no way

* Needs to be integrated with the NoSQL stuff,
network outcalls

* Must allow pretty code

Expressing Dataflow

my @work = generate_work();
PM::FrameWork::do_work(\@work, \& first,
(framecount =>5, fps=>1));
sub first {
my (Sframe, Swork) = @ _;
get page(Swork, Sframe->{page});
return \& second;

J

sub second {
my (Sframe) = @_;
... do something with Sframe->{page} ...
return undef;

J

Dataflow good and bad

* Good: very efficient, great cache patterns

— our crawlers frequently have 1000 active frames
per single-threaded process

* Slightly bad: have to run multiple heavy-
weight processes to use multiple cores

— because perl is single-threaded

— not a big deal for us, all of our daemons are
parallel

— multiple crawlers/box, 1 set of disk daemons for
every disk etc.

Continuous Everything

* Continuous Integration
— was Jenkins, now homegrown
— end-to-end testing catches most disasters

e Continuous Deployment
— want to push the webserver multiple times a day

— want to push the NoSQL daemons every few
months

— no downtime for search users

* Continuous monitoring
— Nagios and status displays

Show me the money: ad clic

Live Ad Clicks: from All Sources: 2h 53m (14:36:40 to 17:30:32) at 30 sec intervals

Active Sources: all sources. 4 - Updsteevery 10 secs. - At 30 secintervals. combineadfeeds show ol clics pause refresh Swnt
Ad Clicks from all sources. Totals:
total clicks: 14.5K - 1.4 avg cps
unique clicks: 12.3K (84.7%) - 1.2 avg cps

Total Ad Clicks M Unique Ad Clicies (Bl Derved Ad Cicks

2 | | denied clicks: 470.0 (3.2%) - 0.0 avg cps
20 Last 30s:
° clicks:31- 1.0 cps
8. unique clicks: 26 (83.9%) - 0.9 cps
] denied clicks:0 (0.0%) - 0.0 cps
°© 10
Previous 30s:
s clicks:40 - 1.3 cps

unique clicks:35 (87.5%) - 1.2 cps

o | .‘_JL bl ool B Jln“ | ..‘Lll whidly Lot il o Lowe bt ol . s 1h L)} denied clicks:0 0.0%) - 0.0cps
1440 450 1500 1510 1520 1530 1540 1550 1600 1610 1620 1630 1640 1650 700 1700 1720 1730

infospace Totals:
20
infospace ad clics Ml nfospace denied dicks total clicks: 10.6K - 1.0 avg cps
unique clicks:9.2K (86.6%) - 0.9 avg cps
denied clicks:355.0 (3.4%) - 0.0 avg cps
15 . J
Last 30s:
o clicks:22 0.7 cps
8.0 unique clicks: 18 (81.8%) - 0.6 cps
] denied clicks:0 (0.0%) - 0.0 cps
3
Previous 30s:
05
clicks:27 - 0.9 cps
unique clicks: 25 (92.6%) - 0.8 cps
o Lottt L Lk J Jit denied clicks:0 (0.0%) - 0.0 cps
14:40 1450 15:00 15:10 1520 1530 1540 1550 16:00 16:10 1620 1630 18240 16:50 17:00 17:10 1720 17:30
yahoo Totals:
12
yabhoo ad s [Mlyahoo deried clcks total clicks:3.9K - 0.4 avg cps
unique clicks:3.1K (70.8%) - 0.3 avg cps
e 0| denied clicks: 115.0 (2.9%) - 0.0 avg cps
08 Last 30s:
o clicks:9 - 0.3 cps
8o unique clicks:8 (88.9%) - 0.3 cps
] denied clicks:0 (0.0%) - 0.0 cps
° 04
Previous 30s:
o clicks: 13- 0.4 cps

unique clicks: 10 (76.9%) - 0.3 cps

o HER | S | P (I ” N l.l.l w | .|..|...|.. m s hlyy|] denied clicks:0 (0.0%) - 0.0 cps
1440 1450 1500 1670 1520 1530 1540 1550 1600 1610 1620 1630 1640 1650 1700 1740 1720 1730

Top Sources Install Sphere Rev S... 2,934 clks - 0.
o install Sphere Rev Share |1 Lavasoft Bl Pands Security Il CNET Il SosislAds - 00 Lavasoft 2417 clks - 0.
o7 Panda Security 1,390 clks - 0.
CNET 1275 clks -
o8 SocialAds - 00 1,155 clks - 0.
SocialAds - 05 990 clks - 0.

Orbit Downloader 635 clks -
AnchorFree 539 clks - 0.
Install Sphere 517 clks - 0.
WinPortal 495 clks -
Softonic 421 clks - 0.
pmg3 288 clks - 0.
FutureAds (ArcadeCan... 270 clks - 0.
Admarketplace: home ... 215 clks -
SocialAds - 03 208 clks - 0.
Install Sphere Monti... 105 clks - 0.

click / sec

1440 1450 1500 1510 1520 1530 1540 1550 1600 1610 1620 1630 1640 1650 1700 1710 1720 1730

What we’ve got

e Each of our daemons has its own complete set
of perl libraries, independently updatable

e Bittorrent-like thingie that manages millions of
objects (files)
— one file changed in 1 snapshot deployed in a few
seconds

* build <changeset> && badm restart fe

 Works great! A few rollbacks, but most
outages affect a subset of users and we just fix
the bug

Updating to 5.16

* First step was hard, because we stopped using
the system perl & CPAN from rpms

— Was needed to facilitate changing out Linux
— Which we did, CentOS 5 =>6

e We have a lot of XS. Numerous minor
changes. Some Cargo Cult in our XS.

e 5.18: a few days work. Bug #118159
Sa =dualvar 1, “”; print Sa ? “true” : “false”
Change was reverted! Our first perl bug ever!

Advice for updating

Watch out for dual-life modules: upgrades turn
into downgrades when you rev Perl

Yes, updating 400 cpan modules will introduce
bugs

— BSD::Resource::getrlimit stopped returning a hashref
in scalar context between 1.28 and 1.2904

Rerun all your XS memory leak tests

Read the release notes

— sv_upgrade => SVUPGRADE

All your hacks will haunt you

— failed requires stay in %INC in 5.16, wuh?

Send out advice to your colleagues
— “don’t use given/when & smartmatch”

Blaming the Bystander

We're still on 10::AlO 3.3, tip is 4.18
All of our disk 1/0 goes through it, even logs
Significant bug: double-close

— if you reuse fds fast enough, it closes something

— our daemons would run for 2 weeks and then close
their TCP accept socket, or their UDP socket

Never reported to author ®

Upgraded to CentOS 6: OMG !!! [oad doubled,
disks are 100% busy !!! Our old 10::AlO is
incompatible with new kenel ?1?!

Solved a week later: 10::AlO a bystander

Challenges with perl

* Memory leaks

— Surprised that a tool to monitor object leaks is not
common

— Built one; turns out almost all of our leaks were
actually busted XS

e Crashesin5.8.8

— Built an industrial strength stack dumper: C then
ugly Perl then pretty Perl

— Woah. 5.16 got rid of all of our mystery crashes

The Dien Bien Phu of logfile analysis

e perl spews shit to stderr all the time

* Hard to split our warns from perl complaints
formatted like warns (“at line N, file foo”)

* In order to summarize all those damn warns, |
thought | wanted to know the difference

* | wrote a routine with a 720 line regex of
messages culled from perldiag

* Also needed to make a list of non-warn-like
things perl printed: /Apanic:/
* And glibc: /A\Q*** stack smashing detected/

Please

 Someone (with more brain than |) please
invent a better methodology for classifying
lines in logfiles from long running daemons

* |I'll toss in the “get some backtrace info even if
the stack is corrupt” stuff

The body count

* total perl: 3,500 files, 1.07 million lines
— NoSQL: 135,000 lines
— Search engine: 872,000 lines

e total XS: 152 files, 82,000 lines
e total C/C++: 380 files, 326,000 lines

* S53 million, nearly 6 years of our lives, 5
babies, 5 million daily searches, a few gray
hairs, our CEO has a tonsure now

Open Data and Open Source

e ODP got a lot of interest in the open source
community, & inspired Wikipedia
— (that was us, yo)

 We've gotten little attention for giving away
both our curation data (github.com/blekko)
and our crawl ranking data (via the Common
Crawl| Foundation)

 We're open to Open Sourcing a bunch of our
code, but our resources to do it are zilch.

p.s. this is the secret sauce

Query —

e 2,000 vertical
categories built by our

@

librarians

* Non-keyword-based
classification using the
web as a dataset

e Runsin ~0.01 seconds

—> SERP

* Many accurate
categories for
ambiguous queries

* Additional word-based
“afterburner” to split
big categories like
“programming”

Thank you! For more info

http://bit.ly/yapcna_blekko 2013

These slides

High Scalability blog series
Videos of conference talks
A few blekko blog postings

